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Abstract: In this paper we present remarcable properties of excessive functions 

with respect to absolute continue resolvent. The cone of above functions forms 

a -cone. 

 

Keywords: excessive function, -cone, absolute continue resolvent  

 

The excessive functions with respect to absolute continue resolvent. 

Definiton 1. If  is a measurable space and  the numerical positive 

measurable functions on  we denote a kernel on  a map  

with properties: 

1.   

2.  . 

Definition 2. A family  of kernels on measurable space  is 

called resolvent if the followings hold: 

1.  

2.  

 

The resolvent is called sub-Markovian if for any  we have   

The kernel  is called initially kernel. 

 

Definition 3.  A map  is called - excessive if the followings hold: 

1.  is  –supermedian, i.e  for any  

2.  

3.  is finite  a.e. (a set  is -negligible if there exists  such 

that  and  for any  

Proposition 1. We have the following properties: 

1. If  it follows that    

2. If  it follows that   

3. For any ,  it follows that  

4. For any  it follows that  

5. If  - a.p.t. 

6. If  see (e.g [1] Proposition 1.18) 

Theorem 1. We have the following properties: 

1. For any  (the set of excessive functions),  it follows that 
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2. For any    -a. e. it follows that  

3. For any  there exists  and we have  and 

 for any  

4. For any  dominated there exists  and we have 

 where  (  if and only if 

 for any  (see e.g. [1] Theorem 1.1.9) 

 If  is an increasing family we have  

5. For any  such that  there exists  such 

that  and  (see e.g. [4] Theorem 1.1.9) 

Definition 4. A resolvent is absolutely continue (with respect to a 

finite measure  if for any , such that  it follows that 

 for any  

Theorem 2. Let  an absolutely continue resolvent (with respect to 

a finite measure ). Then the followings hold: 

1. For any increasingly and dominated family  we have 

 and there exists an increasing family , such that  

. 

2. For any family  there exists a subsequence  such 

that  and , for any  (see e.g [4] 

Theorem 1.1.10) 

Definition 4. An ordered convex cone  is called -cone if the following 

axioms are satisfied: 

1. For any non-empty family  there exists  and we have 

 for any  

2. For any increasing and dominated family  there exists  and we 

have  for any  

3.  satisfies the Riesz decomposition property i.e. for any  

such that  there exist  satisfying  

.  

From two theorem above it follows that the cone of excessive functions with 

respect to absolute continue resolvent forms a -cone. 
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